Cost-sensitive learning of classification knowledge and its applications in robotics
نویسندگان
چکیده
منابع مشابه
Active Learning for Cost-Sensitive Classification
We design an active learning algorithm for cost-sensitive multiclass classification: problems where different errors have different costs. Our algorithm, COAL, makes predictions by regressing to each label’s cost and predicting the smallest. On a new example, it uses a set of regressors that perform well on past data to estimate possible costs for each label. It queries only the labels that cou...
متن کاملActive Learning for Cost-Sensitive Classification
i,y with features x and label y. The computation of this sensitivity value is governed by the actual online update where we compute the derivative of the change in the prediction as a function of the importance weight w for a hypothetical example with cost 0 or cost 1 and the same features. This is possible for essentially all online update rules on importance weighted examples and it correspon...
متن کاملOverview of learning theories and its applications in medical education
Introduction: The purpose of teaching is learning, and learning is related to learning theories. These theories describe and explain how people learn. According to various experts' opinion about learning, many theories emerged. The paper reviewed three major approaches include behaviorism, cognitive and constructive learning and its educational applications in medical science. Methods: this pa...
متن کاملassessment of deep word knowledge in elementary and advanced iranian efl learners: a comparison of selective and productive wat tasks
testing plays a vital role in any language teaching program. it allows teachers and stakeholders, including program administrators, parents, admissions officers and prospective employers to be assured that the learners are progressing according to an accepted standard (douglas, 2010). the problems currently facing language testers have both practical and theoretical implications but the first i...
the clustering and classification data mining techniques in insurance fraud detection:the case of iranian car insurance
با توجه به گسترش روز افزون تقلب در حوزه بیمه به خصوص در بخش بیمه اتومبیل و تبعات منفی آن برای شرکت های بیمه، به کارگیری روش های مناسب و کارآمد به منظور شناسایی و کشف تقلب در این حوزه امری ضروری است. درک الگوی موجود در داده های مربوط به مطالبات گزارش شده گذشته می تواند در کشف واقعی یا غیرواقعی بودن ادعای خسارت، مفید باشد. یکی از متداول ترین و پرکاربردترین راه های کشف الگوی داده ها استفاده از ر...
ذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Machine Learning
سال: 1993
ISSN: 0885-6125,1573-0565
DOI: 10.1007/bf00993101